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Rapid Note

Kosterlitz-Thouless vs. Ginzburg-Landau description
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Abstract. We evaluate the charge and spin susceptibilities of the 2D attractive Hubbard model and we
compare our results with Monte Carlo simulations on the same model. We discuss the possibility to
include topological Kosterlitz-Thouless superconducting fluctuations in a standard perturbative approach
substituting in the fluctuation propagator the Ginzburg-Landau correlation length with the Kosterlitz-
Thouless correlation length.

PACS. 74.20.De Phenomenological theories (two-fluid, Ginzburg-Landau, etc.) – 74.72.-h High-Tc com-
pounds – 74.25.-q General properties; correlations between physical properties in normal and supercon-
ducting states

The discovery of spin and charge pseudogaps in the nor-
mal state of underdoped superconducting cuprates [1]
has triggered a renewed interest on the physics of pre-
formed Cooper pairs. The actual source of the pseudo-
gaps (pairing, and/or spin-, and/or charge fluctuations)
and the leading mechanisms responsible for the reduc-
tion of the superfluid density at low temperature (classical
phase fluctuations, collective modes, quasiparticle excita-
tions) are still debated. However, many indications sup-
port the idea that pairing occurs below some crossover
temperature T ∗, while the phase coherence is established
at a sizably lower temperature. The low density of car-
riers resulting in a low superfluid density and the short
coherence length ξ0 ∼ 10÷ 30 Å, support the relevance of
the superconducting phase fluctuations in the thermody-
namic and dynamic properties of these materials. More-
over, although topological phase fluctuations have been
suggested to play a role in the superconductor-to-normal-
state phase transition even in three-dimensional extreme
type-II superconductors [2], it is clear that these fluctua-
tions are crucial in two dimensions, where they give rise
to the Kosterlitz-Thouless (KT) transition via the vortex-
antivortex unbinding. Although no discontinuity of the
superfluid density at Tc is observed, the strong anisotropy
due to the layered structure of the cuprates suggests that
some features of a KT transition could be present in these
systems, in agreement with recent experiments [3]. There-
fore it is worth investigating the effects of the topological
vortex-antivortex phase fluctuations on the various prop-
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erties of a 2D superconductor. In particular, an important
issue concerns the inclusion of these effects in evaluating
thermodynamic quantities like the spin susceptibility or
the charge susceptibility. In this context, the aim of the
present work is to look for possible connections between
the perturbative scheme leading to the standard time-
dependent Ginzburg-Landau (TDGL) results and the KT
physics.

Halperin and Nelson [4] have shown that, in the
KT regime, the contributions of superconducting fluctua-
tions to the conductivity above TKT have the same func-
tional form, in terms of the correlation length ξ, as the
Aslamazov-Larkin contributions of the standard TDGL
theory, σKT(ξ) ' σGL(ξ) ∼ ξ2. The same holds for the
fluctuation contribution to the diamagnetism χd

KT(ξ) '
χd

GL(ξ) ∼ ξ2. In spite of the same correlation length depen-
dence, conductivity and diamagnetism in KT or TDGL
theory have a completely different temperature depen-
dence, induced by the different temperature dependence
of the correlation length in the two theories. The KT cor-
relation length diverges exponentially at TKT while the
GL correlation length diverges as a power-law with the
classical exponent ν = 1

2 . Therefore the KT conductivity
and the diamagnetic susceptibility diverge exponentially
at TKT while the same quantities in the TDGL theory di-
verge as a power-law at Tc with a critical exponent γ = 1.
In the present work we investigate the possibility that,
in analogy with conductivity and diamagnetism, the cor-
rect behavior of the spin and charge susceptibilities in the
KT regime can be simply recovered by inserting the KT
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Fig. 1. Comparison between Monte Carlo spin susceptibility
(taken from Ref. [6]) and the spin susceptibility calculated us-
ing the Ginzburg-Landau (χGL

s ) and the Kosterlitz-Thouless
(χKT

s ) correlation length.

correlation length in their TDGL expressions. We shall
find that this prescription does work for the spin suscep-
tibility while it does not for the charge susceptibility.

We analyze the two-dimensional negative-U Hubbard
model [11] which is the simplest minimal model where the
distinct occurrence of pairing and phase coherence can be
investigated. Within this model, the spin susceptibility χs

and the charge compressibility χc are calculated on a two-
dimensional square lattice by performing a loop expan-
sion with the fermions exchanging the Cooper-fluctuations
propagator in the standard form. Before giving the tech-
nical details of our treatment, we immediately present our
results.

Figure 1 shows the behavior of the spin susceptibility
when the correlation length is assumed either of the GL
form (dashed line with crosses) or of the KT form (dotted
line with stars). Both curves are compared with the Monte
Carlo data obtained in reference [7,8] for the negative-U
Hubbard model with U = −4t (t is the nearest-neighbor
hopping) at filling n = 0.5 electrons per cell. The critical
temperature TKT of the KT superconducting transition,
as extracted from numerical calculations, is TKT = 0.05t
and has been used as the input critical temperature for
our perturbative calculations. In the Monte Carlo data,
for T less then T ? ' t � TKT, χs starts decreasing. This
indicates the existence of strong superconducting fluctu-
ations in the temperature range between the mean-field
transition temperature (TBCS ' 0.6t) and the true KT
transition. It is apparent from Figure 1 that the rapid de-
crease of the spin susceptibility in the Monte Carlo results
is well fitted by inserting in the correlation length the KT
temperature dependence as given by the expression

ξKT(T ) = ξc exp

[
b

√
T (TBCS − TKT)
TBCS(T − TKT)

]
. (1)

Here ξc is an effective size of the core of the vor-
tex that we take of the order of the zero temper-
ature correlation length ξ0, and b is a positive con-
stant of the order of unity. This specific form of
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Fig. 2. Comparison between Monte Carlo charge susceptibility
(taken from Ref. [8]), the charge susceptibility calculated using
the Kosterlitz-Thouless correlation length (χc) and the RPA
resummation of the bare bubble (χRPA

0 ).

the KT correlation length has been derived along
the line of reference [4], although it differs slightly
from the one commonly quoted in the literature [5,6].
We shall comment on this later. Notice that the KT
mass term (inverse square of the correlation length) of
the Cooper propagator remains small and generates strong
fluctuations, in a wider range of temperatures than the GL
mass with the same critical temperature in agreement with
Monte Carlo data. The GL correlation length is instead
completely inadequate to reproduce the Monte Carlo data
in the all range of temperatures.

The fit in Figure 1 stops at T ' 0.1t because there are
no numerical data below this value. This also appears to
be the lower limit for our approach to work. Indeed for
T ' 0.09t the TDGL expression for χs develops a non
physical behavior (χs < 0), indicating that the perturba-
tive scheme no longer applies near TKT. Whit this caution
in mind, the results of Figure 1 indicate that the simple
loop expansion we adopted is able to reproduce the spin
susceptibility in a wide range of temperatures. They sup-
port the idea that the main effect of the vortex-antivortex
phase fluctuations on the spin susceptibility is embedded
in (and satisfactorily accounted for by) the temperature
dependence of the ξKT(T ) correlation length, in analogy
with the conductivity and diamagnetism.

On the other hand, as seen in Figure 2, the same type
of calculations for the charge susceptibility fail in describ-
ing the nearly constant (but with sizeable error bars) be-
havior obtained numerically. In particular, we find that
the Aslamazov-Larkin (AL) contribution, which does not
contribute to the spin susceptibility, strongly enhances
χc(T ) and eventually leads to a divergent χc near TKT.
As a consequence χc(T ) strongly deviates from the Monte
Carlo results for T < TBCS. In Figure 2 we also report
the RPA resummation of the bare bubble in the charge
channel that fits the available Monte Carlo data, to ob-
tain, by extrapolation, the χc(T ) at higher temperature.

With this respect χc appears to behave as the specific
heat Cv, for which the 2D-TDGL expression CGL

v ∼ ξ2
GL

does not reproduce the correct KT result CKT
v ∼ ξ−2

KT,
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even when expressed in terms of the correlation length.
This failure arises despite the free energies in the two the-
ories have the same leading behavior (but for an over-
all sign and a subleading logarithmic correction) when
written in terms of the respective correlation lengths:
FGL ∼ ξ−2

GL ln ξGL and FKT ∼ −ξ−2
KT [5,6]. The similarity of

the free energies indicates that our procedure of replacing
ξKT inside the TDGL expressions nearly holds at least in
providing the correct scaling behavior of the free energy at
the transition. On the other hand, the temperature depen-
dence of the coherence lengths are quite different within
the TDGL and KT theories and therefore, starting from
the GL and KT free-energy expressions and differentiat-
ing in temperature, one obtains quite different expressions
for CGL

v and CKT
v in terms of the ξ’s. Notice that, even

assuming FGL(ξKT) ∼ FKT(ξKT), CKT
v ∝ d2FKT(ξKT)

dT 2 has

no relation with CGL
v (ξGL → ξKT) ∝ d2FGL(ξGL)

dT 2

∣∣∣
ξKT

. Ac-

cording to this example, quantities involving temperature
derivatives of the correlation lengths are hardly expected
to be reproduced by the replacement ξGL → ξKT in the
GL expressions. Our result for χc has the same origin:
The charge response at ω = 0, q → 0 can be obtained as
a chemical potential derivative of the free energy. Now,
since the critical temperature depends on the chemical
potential Tc = Tc(µ), a total derivative with respect to µ
also involves derivatives with respect to Tc, and, in turn,
derivatives of ξ. Therefore the temperature dependence in
χc not only arises from the temperature dependence of
ξ(T ), but also depends on dξ/dTc ' −dξ/dT . In fact one
gets the same TDGL singular contribution∼ ξ2 for χc and
Cv. Our simple perturbative expansion, where the leading
temperature dependence only arises from the mass term
ξ−2 of the Cooper fluctuation propagator in the TDGL
expression, fails to reproduce the correct temperature de-
pendence for χc in the same way as it fails in evaluating
the specific heat.

We now describe the details of our calculations. The
model we consider is given by

H = −t
∑
〈i,j〉σ

c†iσcjσ + U
∑
i

ni↑ni↓ − µ
∑
iσ

niσ (2)

where t is the hopping between nearest-neighbor sites,
U < 0 the strength of the attraction and µ the chem-
ical potential. The standard ladder resummation of di-
agrams leads to the Cooper pair propagator L(q,Ωl) =
−U/ (1 + Uχpp

0 (q,Ωl)) where χpp
0 (q,Ωl) is the bare

particle-particle bubble, being q the momenta and Ωl the
Matsubara frequency. In the normal state, within the stan-
dard GL approach, at small q and Ωl one has

L−1(q,Ωl) = N0

(
ε+ ηq2 + γ|Ωl|

)
(3)

where N0 is the density of states at the Fermi energy,
η = 7ζ(3)/(32π2)(vF/Tc)2 ' ξ2

0 , and γ = π/(8Tc). The
mass term ε = ln(T/Tc) = (ξ/ξ0)−2 of the propagator
controls the distance from the superconducting transition.
In the standard GL approach ε ∼ ξ−2

GL and near Tc it goes
to zero as (T − Tc)/Tc.

We study the charge and spin susceptibilities by eval-
uating the one loop corrections ∆χc (charge channel) and
∆χs (spin channel) to the bare particle-hole bubble χph

0 ,
χph

c,s = χph
0 + ∆χc,s. The charge (c) and spin (s) bub-

bles χph
c,s are then inserted in the RPA resummation to

get the charge and spin susceptibilities (see below). In
the one loop expansion, we include diagrams containing
only one integration on the bosonic variables (q,Ωl) (i.e.
one bosonic loop) of the fluctuation propagator L(q,Ωl),
obtaining three kinds of diagrams which contribute differ-
ently to the spin and charge susceptibilities: the selfenergy
diagrams, where L(q,Ωl) renormalizes the one particle
bare Green function (DOS contribution); the vertex dia-
grams, where L(q,Ωl) renormalizes the vertex, connecting
two bare Green function (Maki-Thompson (MT) contri-
bution); the Aslamazov-Larkin (AL) diagrams, containing
two fluctuation propagators. Moreover it is necessary to
add the counterterms (CT) proportional to the shift of the
chemical potential δµ, which is required to preserve the
number of particles. We notice that the one loop expan-
sion for the charge and the spin susceptibilities satisfies
the relation, derived from spin and charge conservation,
χs,c (q = 0, Ω 6= 0) = 0. One obtains:

∆χs = 4DOS − 2MT + 4CT (4)
∆χc = 4DOS + 2MT + 4AL+ 4CT. (5)

The absence of the AL contribution and the (opposite)
sign of the MT diagrams in the spin susceptibility is the
consequence of the vertex spin structure, as shown in
reference [12]. Moreover the leading DOS contributions
to the charge susceptibility cancel the MT ones. The AL
diagrams give therefore the most important contribution
to the charge susceptibility (being the CT diagrams sub-
dominant respect to them) [13].

According to the physical assumption outlined above
that the TDGL and KT temperature dependencies are es-
sentially ruled by the correlation lengths, we have alterna-
tively taken equation (3) with ξ = ξGL and ξ = ξKT. In the
calculation with ξGL we used Tc = TKT and the mass term
ε = ln(T/Tc), while in the calculation with ξKT we used
equation (1) with b = 1.6 and ξc = ξ0. In both cases we
took the coefficients η and γ given by the corresponding
expressions reported below equation (3) calculated with
Tc = TBCS. This choice was motivated by the plausible
assumption that η and γ change little once the fluctua-
tions are predominantly in the phase sector. In any case
we checked that our results are rather stable with respect
to modifications of η and γ.

The charge and the spin susceptibilities are finally ob-
tained by the RPA resummation of the corrected charge
and spin bubbles χc,s = χph

c,s/
(

1± (Ũc,s/2)χph
c,s

)
where the

plus (minus) sign is associated to the charge (spin) suscep-
tibility. Notice that, following the analysis of reference [7],
the RPA expressions of both susceptibilities contain an ef-
fective local interaction Ũc,s instead of the bare U in order
to properly fit the high temperature region of the Monte
Carlo data. The validity of the RPA form for the spin sus-
ceptibility is also found in the context of the positive-U
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Hubbard model [14]. However, while in reference [7] the
bare bubbles were resummed and a value Ũs = −6.5 was
obtained for U = −4t and 〈n〉 = 0.5, in our case we resum
the bubbles already containing the ∆χs corrections and a
different value Ũs = −4.6 is needed to match the RPA cal-
culation with the high temperature Monte Carlo data. For
the charge susceptibility the comparison with the RPA re-
summation in terms of the χph

0 reported in Figure 2 gives
Ũc = −1.6.

We now comment on the expression in equation (1)
that we used for the KT correlation length. We
wrote this expression following Halperin and Nelson [4].
They introduce into the KT correlation length ξKT '
a exp [b(πJ/kBT − 1)] for the classical XY model (with
coupling J and lattice spacing a) a temperature depen-
dent J(T ) = ns(T )/8m and take a = ξc. Here the super-
fluid density ns(T ) is taken to vanish linearly at a tem-
perature T0(> TKT) to be determined selfconsistently by
the request that T0 should include the effect of the fluc-
tuations at scale lower than ξc. Our expression (1) is ob-
tained by taking T0 ' TBCS and ξc ' ξ0 with the idea
that phase fluctuations are the most important effect all
over the range of temperatures TKT ≤ T ≤ TBCS (at least
in evaluating χs and χc) [15].

The results of the simple procedure outlined above are
quite satisfactory for the spin susceptibility. This indicates
that the main temperature dependence of this quantity
actually arises from the specific KT temperature depen-
dence of the correlation length, which thus brings along
the physics of the vortex-antivortex phase fluctuations
into a simple perturbative scheme. The same is not true
for the compressibility, as for the specific heat, since these
quantities also involve temperature derivatives of ξKT.

Our method, developed for the 2D attractive Hubbard
model, can be useful to understand the role of the super-
conducting phase fluctuations in quasi-2D cuprate super-
conductors. In this context the recent finding that KT
signatures, which are absent in the static conductivity, are
progressively more evident in the dynamical conductivity
at shorter timescales [3] encourages to extend our analysis
to other frequency-dependent quantities. In particular it
is of obvious interest to explore the possibility to include
in a simple perturbative scheme along the lines followed

in the present work the effects of KT topological phase
fluctuations on dynamical quantities like the optical con-
ductivity and single-particle spectra.

We acknowledge S. Caprara, C. Di Castro, P. Pieri, G.C.
Strinati and A.A. Varlamov for helpful discussions.
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